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Abstract
Natural hazards have the potential to cause catastrophic damage and significant socioec-
onomic loss. The actual damage and loss observed in the recent decades has shown an 
increasing trend. As a result, disaster managers need to take a growing responsibility to 
proactively protect their communities by developing efficient management strategies. A 
number of research studies apply artificial intelligence (AI) techniques to process disaster-
related data for supporting informed disaster management. This study provides an over-
view of current applications of AI in disaster management during its four phases: mitiga-
tion, preparedness, response, and recovery. It presents example applications of different AI 
techniques and their benefits for supporting disaster management at different phases, as 
well as some practical AI-based decision support tools. We find that the majority of AI 
applications focus on the disaster response phase. This study also identifies challenges to 
inspire the professional community to advance AI techniques for addressing them in future 
research.

Keywords  Disaster resilience · Disaster management · Artificial intelligence

1  Introduction

Natural hazards have caused catastrophic damage and significant socioeconomic loss, 
showing an increasing trend (Hoeppe 2016). Statistics for 2017 indicate economic losses 
from natural hazards in the USA exceed $300 billion; Hurricane Harvey alone has caused 
$125 billion in socioeconomic losses (Wilts 2018). These adverse impacts pose challenges 
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to disaster response managers, who face increasingly tight resources and an exhausted 
workforce, and such challenges force local authorities to re-evaluate their policies for dis-
aster management.

There are large volumes of data generated daily, including real data and simulation data. 
Both types of data can be used to support disaster management. The advancement of infor-
mation communication technologies, such as social media, telecommunication data, and 
remote sensing, makes large volumes of real data available (Eguchi et al. 2008; Boccardo 
and Tonolo 2014; Rawat et al. 2015; Adeel et al. 2018; Novellino et al. 2018). Sometimes, 
real data are scarce. In research communities, many computational models are developed 
to generate simulation data for estimating the disaster-induced impact and identifying vul-
nerable structures, such as IN-CORE (Ellingwood et al. 2016) and PRAISys (The PRAISys 
Team 2018). Regardless of data type, acquiring, managing, and processing big data in a 
short time is essential to support efficient disaster management. Using AI to analyze the 
voluminous data to rapidly extract useful and reliable information becomes increasingly 
popular for supporting effective decision-making in disaster management (Eskandarpour 
and Khodaei 2017; Velev et  al. 2018; Yu et  al. 2018; Wang et  al. 2018d; Barabadi and 
Ayele 2018).

Some published studies have reviewed AI applications in disaster management, with 
the topic targeted to certain types of hazard, infrastructure, and data. For example, Foto-
vatikhah et al. (2018) have discussed the status and challenges of applying computational 
intelligence methods to major flood control and disaster management. Zagorecki et  al. 
(2013) have reviewed applications of data mining and machine learning to disaster man-
agement, but there is no discussion on any practical AI-based decision support tools. Other 
studies review how computer vision methods have been applied for disaster management 
by analyzing remote sensing data, such as target recognition with deep learning (Zhang 
et al. 2016b), fire detection with wavelet analysis and neural networks (Yuan et al. 2015), 
and estimating three-dimensional structures (Gomez and Purdie 2016). However, very few 
of them have explicitly discussed the progress and challenges of how AI has been applied 
in disaster management in different phases, by considering hazard and infrastructure as 
well as data in a general sense.

In what follows, we describe the research background of AI methods and disaster man-
agement first, followed by the state of research and practice of applications of AI in dis-
aster management in four phases, and the challenges therein. In particular, practical deci-
sion support tools for disaster management based on AI methods have been reviewed. This 
study can facilitate new researchers to identify critical research gaps in this field and pro-
vide practitioners a comprehensive summary for selecting an appropriate AI model and 
practical decision support tool based on their community needs.

2 � Background

2.1 � AI methods

This study reviews the state of research and practice of applying AI in disaster manage-
ment, by classifying AI methods in six categories: supervised models, unsupervised mod-
els, deep learning, reinforcement learning, and deep reinforcement learning, as well as 
optimization.
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2.1.1 � Supervised models

Supervised models represent algorithms that are trained on pre-existing data with 
human input. Using labeled training data with known input and output pairs, supervised 
models infer a function from input to output using regression/classification methods to 
predict the value/category of the output variable (Russell and Norvig 2016). In gen-
eral, supervised models have been used for information extraction, object recognition in 
computer vision, pattern recognition, and speech recognition, etc.

2.1.2 � Unsupervised models

Without human input, unsupervised models use statistical methods to extract hidden 
structure in unlabeled data based on inherent characteristics (Russell and Norvig 2016). 
Unsupervised models are suitable for detecting the abnormal data and reducing the 
data dimension, with wide applications to clustering and data aggregation problems. 
Clustering algorithms are used for pattern recognition by partitioning unlabeled data 
into multiple groups based on certain similarity features (Maulik and Bandyopadhyay 
2002). Dimension reduction algorithms, such as principal component analysis (PCA), 
can reduce the complexity of data and avoid overfitting.

2.1.3 � Deep learning

Deep learning is a class of algorithms that use multiple layers to extract features from 
the input data progressively, with improved learning performance and broad application 
scopes (Deng and Yu 2014; Pouyanfar et al. 2018). Despite the drawback of requiring 
long training time, deep learning algorithms are particularly suitable to solve problems 
of damage assessment, motion detection, and facial recognition, transportation predic-
tion, and natural language processing for supporting disaster management. For exam-
ple, recursive neural networks (RvNN) and recurrent neural networks (RNN) have been 
successfully applied to natural language processing (NPL) (Socher et al. 2011; Graves 
et  al. 2013). Convolutional neural networks (CNN) are suitable for image recognition 
(Simonyan and Zisserman 2014), computer vision (Krizhevsky et al. 2017), NPL (Zhao 
and Wu 2016), and speech processing (Dahl et al. 2012).

2.1.4 � Reinforcement learning

By learning from a series of reinforcements (using punishment and rewards as posi-
tive and negative signals), reinforcement learning algorithms are modeled in the form 
of Markov decision processes to address goal-oriented problems for making decisions 
in a sequential manner (Russell and Norvig 2016). Reinforcement learning is suit-
able for solving problems that need to make a sequence of decisions in an uncertain 
and complex environment, with successful applications in robotics, resource manage-
ment, and traffic light control. The main challenge in reinforcement learning is prepar-
ing the suitable training environment that is closely related to tasks to be performed. 
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Typical reinforcement learning algorithms include Q-learning and SARSA (State-
Action-Reward-State-Action), to name a few (Sutton and Barto 2018).

2.1.5 � Deep reinforcement learning

Deep reinforcement learning combines reinforcement learning with deep neural networks 
with the aim of creating software agents that can learn by themselves to establish success-
ful policies for gaining the most long-term rewards. Deep reinforcement learning has supe-
rior performance for solving problems with complex sequential tasks, such as computer 
vision, robotics, finance, smart grids, etc. Requiring a large amount of training data and 
training time to reach reasonable performance, deep reinforcement learning sometimes 
becomes extremely computationally expensive.

2.1.6 � Optimization

While the focus of this study is how AI methods are applied for disaster management, opti-
mization is an essential ingredient in most of AI methods to find the best model as meas-
ured by an objective function. For this reason, this study explicitly lists three optimization 
techniques as example methods and investigates their applications in disaster management.

2.2 � Disaster management

2.2.1 � Four phases of disaster management

As shown in Fig.  1, disaster management involves four phases: mitigation, prepared-
ness, response, and recovery. The mitigation phase refers to management activities for 
preventing or minimizing future emergencies and consequences with long-term benefits. 

Fig. 1   Four phases of disaster management
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Examples of mitigation activities include enforcing advanced building codes and stand-
ards, retrofitting highway overpasses, hospitals, and shelters, informing and educating the 
general public and related stakeholders about hazards and potential mitigation strategies. 
The preparedness phase comes into place when an emergency or a disaster is likely to take 
place. It corresponds to preparatory activities prior to a disaster in order to save lives and 
help response and rescue operations, such as stocking food and water, posting emergency 
contacts, and preparing evacuations. With plans and strategies developed beforehand, the 
response phase mainly puts them into action. Response activities happen during a disas-
ter, usually involving evacuating threatened areas, firefighting, search and rescue efforts, 
shelter management, and humanitarian assistance. After a disaster, the recovery phase 
refers to repair and reconstruction efforts to return to a normal or even better functionality 
level. Recovery actions usually include debris cleanup, precise damage assessment, and 
infrastructure reconstruction, as well as financial assistance from government agencies and 
insurance companies.

2.2.2 � Disaster management and disaster resilience

The goals of disaster management are to implement operations and strategies to effectively 
prepare, rapidly respond and rescue, efficiently allocate resources, quickly correct dam-
age and recover to full functionality, ultimately protect the community and minimize the 
adverse impact. That is to say that the efficient disaster management should strengthen the 
disaster resilience of a community. The term “disaster resilience” refers to the ability of an 

Fig. 2   Features of disaster resilience
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entity to anticipate, resist, absorb, adapt to, and rapidly recover from an unexpected distur-
bance (DHS 2010). Figure 2 displays features of disaster resilience in terms of dimensions, 
stakeholders, disruption types, properties of resilient entities, and benefits. In case of a dis-
aster, such as a hurricane or an earthquake, a resilient community is expected to be able to 
protect people, infrastructure, and socioeconomic environment, with reliable performance 
and fast recovery capability, as well as minimal adverse consequence. The disaster resil-
ience of a community can be enhanced by improving the rapidity, robustness, resourceful-
ness, and redundancy, as well as learning capability, in which learning refers to residents’ 
changing expectations with respect to infrastructure performance and operational adapta-
tions of infrastructures to new circumstances during and after a disaster (Sun et al. 2020b). 
From the disaster management perspective, governments and other stakeholders organ-
ize their operations in multiple aspects (technical, organizational, economic, social, and 
health), various management plans and strategies are developed and implemented.

A number of programs have been established to promote the research and practice of 
disaster resilience for supporting informed decision-making in disaster management. Some 
examples in the USA are described as follows. Since 2013, the Campus Resilience Pro-
gram has yielded successful tools and guidelines for evaluating the vulnerability of the aca-
demic community nationwide. The Hazard Mitigation Grant Program (HMGP) supports 
communities in implementing cost-effective hazard mitigation measures, such as structure 
retrofit and reconstruction, to eliminate the risk of loss of life and property damage from 
future disasters (FEMA 2018). The Community Resilience Planning Guide presents a six-
step process to help local community authorities identify gaps, create resilience plans, and 
implement strategies for better community resilience against future disasters (NIST 2018; 
Cauffman et  al. 2018). In addition, local authorities and private organizations have been 
implementing practices for resilience enhancement. For example, Los Angeles County in 
California has developed a community resilience toolkit to support decision-making in dis-
aster management (Eisenman et al. 2014; Bromley et al. 2017). The 100 Resilient Cities 
program supports city governments’ efforts in fostering urban resilience and addressing 
climate change and equity (The Rockefeller Foundation 2019). In parallel, other countries 
have also been actively working in this direction. The Horizon 2020 Research and Innova-
tion Programme has developed the European Resilience Management Guideline and tools 
for supporting effective disaster management and enhancing the resilience against disasters 
and climate change (EU-CIRCLE 2019). Under the Sendai Framework for Disaster Resil-
ience Network, the Asia-Pacific region has been undertaking major reforms in developing 
disaster management policies with increasing applications of AI in disaster response (UN 
2015; Renwick 2017; Pau et al. 2017; Izumi et al. 2019). All these guidelines and compu-
tational tools aim to support disaster management and enhance disaster resilience. AI has 
great potential to alleviate the burden of decision makers in disaster management by pro-
cessing large amounts of disaster-related data more efficiently and effectively.

3 � Applications of AI for disaster management

Figure 3 shows the increasing trend in the number of publications on WorldCat from 1991 
to 2018 with regard to applying AI to disaster management. The greatest number of pub-
lication in disaster response among four phases indicates that applications of AI mainly 
focus on this phase. While AI will not replace the experience and wisdom of well-trained 
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disaster professionals, at least in the foreseeable future, AI techniques can rapidly ana-
lyze big data and perform predictive analytics for supporting decision-making in disaster 
management.

To illustrate how different AI methods have been applied in disaster management, we 
have identified a total of 26 AI methods and 17 application areas as representative exam-
ples. By using every AI method and every application area as key words, we have searched 
for the related literature on the Web sites of Google Scholar and Web of Science, requiring 
joint presence of both keywords. Figure 4 presents our findings on AI applications to the 
four phases and their sub-areas. In this figure, every solid line demonstrates the presence of 
applications of an AI method in a certain area. More solid lines connecting to Application 
Areas 1–4 and 9–13 mean that there are more studies applying AI methods in mitigation 
and response phases. Detailed application examples are presented as citations in Tables 1, 
2, 3 and 4. It is worth noting that only the most relevant/representative publications are pre-
sented in some cells in the tables due to space limits.

3.1 � AI applications in disaster mitigation

In the disaster mitigation phase, decision makers need to identify hazard and risks (Appli-
cation Area 1), predict possible impact (Application Area 2), assess vulnerability (Appli-
cation Area 3), and develop mitigation strategies (Application Area 4), in order to create 
stronger, safer, and more resilient communities. AI methods have been widely applied to 
support disaster mitigation management in the four areas. In particular, supervised mod-
els and unsupervised models have been extensively used for Application Area 1, followed 
by Areas 2 and 3. Conversely, reinforcement learning and deep reinforcement learning are 
rarely used in the four areas.
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Fig. 3   An increasing number of publications on artificial intelligence in disaster management. Note “Publi-
cations” refers to articles, books, and downloadable archive materials. The number of publications is deter-
mined by summing the number of publications every four years between 1991 and 2018 when searching 
with the keywords in the legend on WorldCat (http://www.world​cat.org/)
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Possible hazards and risks should be identified for the community of interest. For natu-
ral hazards, characteristics of terrain, lithology, meteorology, and even human activities 
should be analyzed, and hazard zone maps should be developed. Traditional methods, such 
as field monitoring, physics-based models, expert surveys, and multi-criteria decision-mak-
ing methods, are applied to identify hazards and risk factors. Sometimes, these methods are 
labor intensive, possibly with high false alarm rate (Bellaire et al. 2017). In this case, AI 
techniques can rapidly analyze large volumes of data to assess hazard risks in a timely 
manner (Pradhan 2009; Yilmaz 2010). There are extensive studies applying different AI 
methods to developing susceptibility maps for different types of hazards. For instance, 
snow avalanche predictions have been made using logistic regression (LR) (Gauthier 
et  al. 2017), support vector machine (SVM) (Choubin et  al. 2019), and neural networks 
(Dekanová et al. 2018; Rauter and Winkler 2018). Landslide susceptibility can be assessed 

Fig. 4   Applications of artificial intelligence in disaster management. Note A solid link between an AI 
method and an application area represents the fact that there are applications of the AI method to this area. 
Detailed application examples are presented in Tables 1, 2, 3 and 4
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by SVM (Xu et al. 2012; Goetz et al. 2015; Zhou et al. 2018a), LR (Goetz et al. 2015; Zhou 
et al. 2018a), random forest (RF) (Goetz et al. 2015), and neural networks (Dou et al. 2015; 
Zhou et al. 2018a). The aforementioned AI methods have also been applied to other types 
of hazards, such as mapping forest fire susceptibility (Sachdeva et al. 2018), predicting fire 
size (Mitsopoulos and Mallinis 2017), and forecasting precipitation (Huang et al. 2018).

AI techniques have been applied to estimate possible impacts and assess vulnerabil-
ity. For instance, possible structural damage under natural hazard(s) can be predicted by 
using fragility curves, which were traditionally built from statistical analyses of historical 
and simulation data and now can be estimated from the application of AI methods, such 
as LR (Ghosh et al. 2013; Kameshwar and Padgett 2014; Mangalahtu et al. 2018), neural 
networks (Lagaros and Fragiadakis 2007; Mitropoulou and Papadrakakis 2011; Liu and 
Zhang 2018; Mangalathu et al. 2018), and SVM (Mahmoudi and Chouinard 2016). Infra-
structure service disruptions due to hazards can be predicted based on historical data using 
generalized regression models (Reed 2008; Liu et al. 2008), RF (Nateghi et al. 2014; Cer-
rai et al. 2019; D’Amico et al. 2019), decision tree (DT) (Wanik et al. 2015), and Bayesian 
additive regression tree (BART) (Cerrai et al. 2019). Using data from physical sensors and 
social sensing, the vulnerability of structures and communities can be assessed with spa-
tial regression models (Wang et al. 2019g), RF (Yoon and Jeong 2016), neural networks 
(Wu et al. 2008), deep neural networks (Nabian and Meidani 2018b), etc. In terms of the 
number of publications, there are fewer applications of AI methods to estimating hazard-
induced impact and assessing community vulnerability (Application Areas 2 and 3), com-
pared with those on hazard forecast and risk assessment (Application Area 1).

Based on the impact and vulnerability analyses, decision makers can gain better situa-
tion awareness with more confidence and develop effective mitigation strategies (Schwartz 
2018), such as retrofitting vulnerable structures (Karamlou et al. 2016), elevating electric 
substations and using underground cables (Duffey 2019), and developing effective disas-
ter-related policies (Sun et  al. 2020a, 2021). In this process, AI techniques can support 
developing and comparing mitigation strategies. For instance, different AI methods have 
been applied to identifying management priorities (Canon et al. 2018), estimating people’s 
needs during a disaster (Nguyen et  al. 2019a), and recognizing human activities (Sadiq 
et al. 2018). Clustering algorithms are used for analyzing remote images and developing 
contingency plans (Dou et  al. 2014), and optimization algorithms have been applied for 
developing effective plans of disaster response and restoration (Bocchini and Frangopol 
2012a, b; Gama et  al. 2016). So far, there are only a very small number of studies that 
apply AI to developing and comparing mitigation strategies (Application Area 4), as shown 
in Table 1.

3.2 � AI applications in disaster preparedness

In the preparedness phase, decision-makers should send out early warnings and alert the 
public (Application Area 5) after identifying the disaster that is about to come (Application 
Area 6), utilize emergency training systems and tools (Application Area 7), and prepare for 
evacuations if needed (Application Area 8). Among the four areas, most AI methods have 
been applied to Areas 5, 6, and 8, with very limited applications to Area 7, as shown in 
Table 2.

Identifying the coming disasters in real time and sending out early warnings are practical 
solutions for disaster preparations. These tasks usually rely on experts’ analyses and judg-
ments of sensor measurements in the field, and AI techniques can serve as an alternative 
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in a cost-effective manner to forecasting the coming events (Ko and Kwak 2012), such as 
impending hurricane trajectories and storms (Ghosh and Krishnamurti 2018), earthquakes 
(Mousavi et  al. 2019), ice jams (Zhao et  al. 2012), floods (Yaseen et  al. 2015), volcano 
eruptions (Parra et al. 2016), and fires (Muhammad et al. 2018). For instance, the Urban-
Flood project in Europe has established an internet-based platform for early flood warn-
ings, in which an AI component has been developed for detecting abnormal dike behaviors 
based on the analysis of thousands of sensor streams (Noymanee et al. 2017). Sakaki et al. 
(2012) performed semantic analysis of Japanese tweets with a tweet crawler, estimated the 
earthquake location, and developed a reporting system named Toretter that was faster than 
broadcast announcements by Japan Meteorological Agency. Based on the real-time analy-
sis of smartphone accelerometer measurements of tilting motions, earthquake early warn-
ings can also be sent out (Reilly et al. 2013). Prior to a disaster event, utility companies can 
use AI-based tools to estimate likely damage locations and service outage duration and get 
prepared beforehand. For example, Hydro One, a large utility company in Ontario, Canada, 
has successfully used such real-time predictive analyses in April 2018 and then positioned 
crews in key areas and effectively restored the power service within four days, significantly 
reducing the restoration time (McConnon 2018). With the implementation of IoT, cloud 
network services can also rapidly and accurately share information on disaster situations 
for early warnings (Chung and Park 2016).

With respect to disaster evacuations, some situations may give people a day or two to 
prepare while others might call for immediate actions. To prepare for evacuations, possible 
problems should be carefully considered and countermeasures should be developed. For 
example, contraflow operations can be implemented for hurricane evacuations in coastal 
areas to move the most traffic toward inland safety, and AI methods can help practical 
implementations by determining when to activate contraflow lane reversals (Burris et al. 
2015). While large crowds move in different routes during evacuations, it is necessary to 
estimate crowd dynamics (Jiang et al. 2017; Wang et al. 2019b; Zheng and Liu 2019), iden-
tify the best evacuation paths (Peng et al. 2019), and develop evacuation support systems 
(Higuchi et al. 2014). The most popular AI methods applied for evacuations (Application 
Area 8) include SVM, DT, neural networks, and reinforcement learning, as well as optimi-
zation algorithms.

3.3 � AI applications in disaster response

Timely disaster responses are a matter of life and death. Decision-makers need to make 
best efforts to understand the situation and improve the efficiency of response efforts. This 
naturally requires situation awareness for effective decision-making (Application Areas 9 
and 10) and user-friendly disaster information systems for effective coordination (Appli-
cation Area 12) to ensure disaster relief and address people’s urgent needs and concerns 
(Application Areas 11 and 13). AI methods can be applied to facilitate relief and response 
efforts. In general, supervised and unsupervised models, and deep learning have been 
extensively applied to Areas 9 and 10, while other AI methods are rarely adopted for the 
two areas. Most AI methods have been applied to Area 11. Mainly supervised models and 
deep learning algorithms have been applied to Areas 12 and 13, as shown in Table 3.

Developing maps of the impact area(s) is essential for situation awareness, supporting 
efficient disaster response efforts (Ramchurn et al. 2015, 2016). Event maps and damage 
information that are generated from different AI methods can provide vital information for 
planning search and rescue operations, staging and deploying resources, and understanding 
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short-term housing needs (Vieweg 2012; Lin 2015; Kim et  al. 2018c; Rizk et  al. 2019). 
Huge volumes of disaster-related data are continuously generated from satellites (Egu-
chi et al. 2008), unmanned aerial vehicles (Aljehani and Inoue 2018), robots (Park et al. 
2019), and social media (Cervone et al. 2016), based on which disaster event maps can be 
generated. For instance, satellite images have been used to generate maps of infrastructure 
inventory models (Eguchi et al. 2008), damaged buildings and bridges (Adams et al. 2002; 
Hutchinson and Chen 2005; Balz and Liao 2010), and disaster-impacted regions (Casa-
gli et al. 2017; Rosser et al. 2017). By rapidly analyzing these data with computer vision 
methods, “live maps” are generated to represent disaster situations (Lucieer et  al. 2014; 
Middleton et  al. 2014; Fohringer et  al. 2015; Valkaniotis et  al. 2018; Xiao et  al. 2018). 
When analyzing maps and images, classifier algorithms are often used (Vetrivel et  al. 
2016). By comparing maps and images pre-event and post-event, feature discrepancies can 
be extracted to assess damage of structures and infrastructures for prioritizing response 
efforts (van Aardt et al. 2011; German et al. 2013; Bevington et al. 2015; Koch et al. 2016; 
Axel and van Aardt 2017; Cresci et  al. 2015; Cervone et  al. 2016; Nguyen et  al. 2017). 
Different databases have been established for supporting damage assessment for different 
structures and hazards, such as xBD for building damage assessment (Gupta et al. 2019), 
and HOWAS21 (Kellermann et  al. 2020) and FIMA NFIP Redacted Claims Data Set 
(FEMA 2019) for flood damage assessment. Crowdsourced information becomes increas-
ing popular in supporting disaster response. Many volunteer efforts focus on speeding up 
the data analysis process to rapidly generate maps and provide invaluable crowdsourced 
information for situation awareness and damage assessment (Barrington et al. 2011; Ghosh 
et  al. 2011; Butler 2013). By harnessing “crowds” of over 1000 experts from 82 coun-
tries, for example, the Humanitarian OpenStreetMap Team generated devastation maps of 
the affected areas in the Philippines shortly after typhoon Haiyan, enabling rapid damage 
assessment and efficient response efforts (Butler 2013).

In disaster rescue and relief, utilizing social media and robotics as well as mobile phone 
data often support timely and effective decision-making. Social media platforms are power-
ful communication tools for individuals and local communities to seek help and for govern-
ments and organizations to disseminate disaster relief information (Li and Rao 2010; Tat-
subori et al. 2012; Takahashi et al. 2015). Social media data embed time and geo-location 
information as well as disaster-related information, serving as good information sources 
for building disaster information systems (Goodchild and Glennon 2010; Srivastava et al. 
2012; Laylavi et al. 2017). This ultimately supports decision-making for disaster relief and 
resource allocations (Castellanos et al. 2018) and for building disaster information systems 
(Aydin and Fellows 2018). To analyze social media data, popular AI methods include clas-
sifiers, reinforcement learning, deep reinforcement learning, and other sentiment analysis 
techniques. However, there are concerns of using social media data as information sources 
due to issues of credibility, reliability, and difficulties in verifying information and process-
ing big data into actionable knowledge (Acar and Muraki 2011; MacEachren et al. 2011; 
Tapia et al. 2011).

In the aftermath of a disaster, the harsh environment hinders human efforts of disaster 
rescue. Disaster robots allow responders and stakeholders to sense and act at a distance 
from the impacted areas (Murphy 2014). Robots can serve as remote sensing platforms 
for mapping and interacting with the destroyed environment (Adams et al. 2014; Kochers-
berger et al. 2014; Stefanov and Evans 2014), fight fires in dangerous conditions (Schnei-
der and Wildermuth 2017; Ando et al. 2018), search and rescue (Murphy and Stover 2007; 
Murphy et al. 2009; Steimle et al. 2009; Zhang et al. 2014; Bakhshipour et al. 2017; Hu 
et  al. 2019), and inspect damage (Devault 2000; Murphy et  al. 2011; Torok et  al. 2014; 



www.manaraa.com

2654	 Natural Hazards (2020) 103:2631–2689

1 3

Ellenberg et al. 2015; Lattanzi and Miller 2015, 2017). Machine learning has been widely 
used for robotics to acquire new skills and adapt to the surrounding environment (Lenz 
2016). For example, deep learning has been applied to visual detection (Socher et al. 2008; 
Giusti et al. 2015), handling multiple input data (Ngiam et al. 2011; Noda et al. 2014), and 
robotic manipulation (Saxena et al. 2008; Gemici and Savena 2014; Lenz 2016). In addi-
tion, optimization algorithms are often used for dynamic path planning and multi-robot 
communication and coordination (Liu et al. 2013; Takeda et al. 2014).

One of the first things people commonly do during a disaster is to contact emergency 
services (and loved ones). Therefore, telecommunications volume sharply increases, usu-
ally following the jump-delay pattern (Bagrow et al. 2011). In disaster response, disaster 
management agencies need to rapidly classify information from such calls and share urgent 
needs of the public to relevant agencies and utility companies. Machine listening can help 
to automatically recognize voices to identify key words with a high priority and rapidly 
process voice data from different regions (Ramchurn et al. 2016). With natural language 
processing algorithms, sentiment mining can help disaster managers perform crisis man-
agement and enable efficient disaster relief with better awareness of the situation, such as 
where to send first responders and distribute resources. Based on the location information 
of the nearby communication network mast, mobile phone data have also been used to esti-
mate population movements and track population displacement in the immediate aftermath 
of disasters (Gonzalez et al. 2009; Tatem et al. 2009; Bengtsson et al. 2011). Oftentimes, 
disasters may completely destroy the base stations of the mobile communication network, 
and so alternative base stations should be rapidly established and allocated to support 
emergency communication, with different countermeasures proposed (Suriya and Sumithra 
2019; Wang et al. 2019d; Samir et al. 2019).

Information sharing and coordination is often the bottleneck in multi-agency response 
due to the unpredictable and dynamic nature of the disaster environment (Chen et  al. 
2008a, b). As the disaster unfolds, the information of the disaster event and its impact, 
victims, and resources may become outdated with large uncertainty and unpredictability 
by the time of sharing, making life-and-death decision-making very challenging (Holguín-
Veras et  al. 2012). Disaster information systems with shared access across agencies and 
organizations can help address these issues, such as collaborative geographic information 
systems (Sun and Li 2016; Abdalla and Esmall 2018; Li et al. 2019c), shared information 
management platforms (Bunker et al. 2015; Rasouli 2018) and decision tools (Moskowitz 
et al. 2011). With the shared data, collaborative data analytics can be implemented to learn 
about the disaster situation and identify relief needs (Tucker et al. 2017). Disaster infor-
mation systems with automatic data-sharing capacity can help decision-makers from dif-
ferent organizations coordinate response efforts in a timely manner. Such ideas have been 
implemented in the forms of various prototypes (Bartoli et al. 2013; Lin and Liaw 2015; 
Foresti et al. 2015; Kim et al. 2018a; Hochgraf et al. 2018). There are multiple applications 
for disaster information systems by using supervised models and deep learning to extract 
information from social media data (Neppalli et al. 2018), mobile phone data (Sun and Tan 
2019), remote sensing data and aerial images (Morito et al. 2016; Tian and Chen 2017b). 
Example disaster information systems include MADIS (Yang et al. 2012), Sahana (Careem 
et  al. 2006), SPIDER (S̆ubik et  al. 2010), CrowdHelp (Besaleva and Weaver 2013), and 
DMCsim (Hashemipour et al. 2017).

A disaster causes not only physical damage to structures and infrastructure but also 
mental damage to people. Different types of feelings will make human focus their attention 
on very different information and lead to completely different decisions and actions (Wat-
son and Clark 1994; Greifeneder et  al. 2011). Understanding feelings and psychological 
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needs of victims would be helpful for effective disaster relief (Lin et al. 2017b; Li et al. 
2019a). AI methods can help in this regard by analyzing social media data to track feel-
ings and reactions of the public. Social media data embed emotional text and images, time 
and geo-location information, which as useful to identify the spatial and temporal evolu-
tion of public behaviors and population mobility, as well as psychological and healthcare 
needs (Bengtsson et al. 2011; Caragea et al. 2014; Ukkusuri et al. 2014; Wilson et al. 2016; 
Kuang and Davison 2017). Previous studies show that there are human activity abnormali-
ties in the physical proximity of the disaster event with obvious spatial and temporal dis-
parities (Chae et  al. 2014; Shelton et  al. 2014; Kryvasheyeu et  al. 2016; Neppalli et  al. 
2017; Liu et al. 2019b; Zou et al. 2019). There are many research efforts working on this 
area (Area 13), such as developing metrics with sentiment analyses to quantify people’s 
reaction/emotion in response to response efforts (Neppalli et  al. 2017; Bhavaraju et  al. 
2019; Singh et al. 2019; Chen et al. 2020).

3.4 � AI applications in disaster recovery

Disaster recovery is a multifaceted process, involving governments and public authorities, 
as well as private organizations. This requires comprehensive decision-making to quickly 
understand the complexity of the situation, identify operational needs and recovery plans, 
and perform rehabilitation and reconstruction activities. As disaster recovery usually takes 
a long time, including precise damage assessment, budgeting, planning, permitting, design 
and construction, AI can be an important module for supporting disaster recovery man-
agement in less time. AI methods have been applied to disaster recovery management, by 
assessing the disaster induced impact in detail (Application Area 14), developing recovery 
plans (Application Area 15), tracking the recovery process (Application Area 16), and esti-
mating loss and repair cost (Application Area 17). The increasing number of publications 
in recent years, shown in Table 4, indicates increasing attention to applying AI for disaster 
recovery management. Among them, more attention has been paid to Application Area 14 
than others (Application Areas 15, 16 and 17).

Quick and accurate assessment of the disaster-induced impact is critical for rapid recov-
ery. In addition to physical damage, a disaster causes psychological distress and economic 
disturbance. When assessing physical damage, visual inspection is a primary method 
adopted in current practice for buildings (Pham et  al. 2014; Choi et  al. 2018; Lenjani 
et al. 2019), bridges (Yeum and Dyke 2015), tunnels (Victores et al. 2011), storage tanks 
(Schempf et  al. 1995), etc. However, the visual inspection method is often tedious and 
labor intensive. AI methods can help eliminate such human efforts based on aerial images, 
social media imagery data, and sensor measurement data (Khaloo et al. 2017; Khoshnou-
dian et al. 2017). When assessing the disaster-induced impact on human, sentiment analy-
ses of social media data can track human activity pattern throughout the recovery (Caragea 
et al. 2014; Hasan and Ukkusuri 2014; Shelton et al. 2014; Resch et al. 2018; Liu et al. 
2019b). When investigating psychological distress following a disaster, the use of surveys 
is a primary method adopted in current practice. Both supervised and unsupervised mod-
els, particularly regression methods, dimension reduction methods, and neural networks, 
are often adopted to analyze survey results to identify risk factors and assess the effective-
ness of preventive interventions (Gao et al. 2006; Kim et al. 2008; Huang et al. 2010; Gong 
et al. 2013; Rosellini et al. 2018). In addition, AI methods have been applied to estimate 
the economic impacts of a hazard, in which supervised models are often used to estab-
lish quantitative relations between critical factors and the economy and identify possible 
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stimulus for economic growth (Zhang and Peacock 2009; Yamaguchi and Shirota 2019; 
Cheng and Zhang 2020; Qiang et al. 2020).

After precisely assessing the disaster induced impact, establishing post-event recovery 
plans is essential for effectively conducting recovery and renewal activities. While pre-
event planning allows participation members to spend significant time and resources for 
fostering cooperative plans, post-event planning is often carried out in a relatively hostile 
environment with less time and resources at hand. In current research, optimization tech-
niques are often adopted to identify efficient plans of restoration, or to estimate human 
decisions of recovery planning (Sun et al. 2021), including genetic algorithms (Xu et al. 
2007; Orabi et  al. 2010; Bocchini and Frangopol 2012b; Karamlou and Bocchini 2016), 
and simulated annealing (Hackl et al. 2018), and other methods (Sarkale et al. 2018; Zhong 
et al. 2018). Additionally, there are few studies applying reinforcement learning and deep 
reinforcement learning to planning post-event recovery strategies (Joo et  al. 2019; Ning 
et al. 2019).

During the recovery process, practitioners need metrics and tools to measure and moni-
tor how well a community recovers from a disaster over time as a means of building com-
munity resilience (Curtis et  al. 2007). Supervised models and deep learning algorithms 
are often used in this aspect by analyzing data from various sources. As social media data 
are attached with geotags or hashtags, using sentiment analysis methods and image clas-
sification techniques to analyze social media data can be very helpful for disaster recovery 
tracking (Eckle et al. 2017; Pogrebnykov and Maldonado 2017; Jamali et al. 2019; Mal-
awani et  al. 2020; Mihunov et  al. 2020). By comparing nighttime light data at different 
time, established regression relations between economic indicators and spatial variations in 
light intensity can provide valuable insights about how the regional economy recovers in a 
quantitative manner (Wang et al. 2018b; Qiang et al. 2020). Using Google Street View to 
remotely track disaster recovery has also become increasingly popular (Curtis et al. 2010; 
Mabon 2016).

In the aftermath of a disaster, governments need to provide timely assistance to recon-
struct homes and rebuild lives; there are urgent demands for a rapid assessment of loss esti-
mate and repair cost (Eguchi et al. 1998; Ladds et al. 2017; Deryugina 2017). AI methods 
can help estimate disaster losses and repair costs. In particular, supervised models, such 
as regression and neural network, have been used to rapidly process imagery for detecting 
structural damage, identifying repair needs, and estimating repair cost; they have also been 
used to analyze historical dispersion data of disaster recovery funds for budget allocations, 
and process insurance claims in less time (Chen and Huang 2006; Barthel and Neumayer 
2012; Zagorecki et al. 2013; Stojadinovic et al. 2017). The existence of only a small num-
ber of publications in this field indicates that AI applications to Area 17 are still in their 
infancy. In current practice, the disaster loss and repair cost are usually estimated based on 
real data from different sources, such as insurance claims, post-disaster assessment, and 
assistance grants and personal loans to victims (Eguchi et al. 1998; Kim et al. 2015). The 
availability of big data and the rapid development of data analytics offer an unprecedented 
opportunity to promote AI applications in rapid estimation of disaster loss and repair cost 
in the near future. However, the lack of standardized methods for collecting and recording 
data may lead to very different estimates of economic impacts (Ladds et al. 2017). There-
fore, establishing policies and standards for data collection is an urgent need.

After a disaster, disaster related rumors and fraud may appear, requiring the awareness 
and alertness of both disaster victims and governments. Data mining can help to identify 
potential fraud (Bagde and Chaudhari 2016; Dutta et al. 2017) and rumors (Mendoza et al. 
2010; Liu et al. 2015; Wu et al. 2015; Zubiaga et al. 2016, 2018), as well as track trends of 
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information flow (Hong et al. 2011; Badmus 2020). For example, insurance companies and 
law enforcement agencies can use machine learning to quickly examine the truthfulness of 
a claim for a flooded house by making a before-and-after comparison of high-resolution 
satellite images (Gilmour 2019).

4 � Practical AI‑based decision support tools

To ultimately facilitate informed disaster management in practice, many AI-based decision 
support tools have been developed by research institutes and industrial companies in the 
past few decades. By searching on Web sites of Google Scholar and Web of Science with 
keywords of “disaster management,” “decision support tool,” and “artificial intelligence,” 
we have found related AI-based tools for decision-making in disaster management. Table 5 
presents example tools that apply various AI techniques in disaster management. These 
tools make use of various data as input to extract useful information, including social 
media data, mobile phone data, sensor measurements, on-site reports from first responders, 
and crowdsourced information from volunteers. These tools cover different infrastructures 
and different types of hazards, contributing to the advancement of AI applications to fos-
tering informed disaster management at different phases. A general trend is that there are 
more tools applicable for the disaster response phase than other phases. Most tools use 
social media data as input; a small portion of tools use sensor measurements, remote sens-
ing data, or mobile phone data as input.

Some tools focus on predicting possible consequences under a hazard scenario for 
developing management plans of retrofit and evacuation in the disaster mitigation and pre-
paredness phases. For instance, Optima PredictTM software simulates and predicts emer-
gent medical service demand and ambulance availability changes in the wake of a disaster, 
helping dispatchers and operations personnel find possible optimal ways of preparing for 
unexpected emergencies (Mason 2013). Other tools provide comprehensive platforms for 
efficient communications with text, audio, and location services for professional response 
teams in the disaster response phase, as saving life is typically the most critical issue in 
the first few days after a disaster and requires communication and situational awareness 
(Yin et al. 2012b). For example, Blueline Grid analyzes real-time mobile phone data for 
efficient disaster responses. One Concern predicts possible infrastructure damages and con-
sequences based on infrastructure data and historical disaster data. Artificial Intelligence 
for Disaster Response (AIDR) automatically classifies crisis-related tweets along with 
crowdsourced information of aerial images to identify victims’ needs and infrastructure 
damage for efficient disaster response management (Imran et  al. 2014; Ofli et  al. 2016). 
SensePlace3 is a geo-visual interface that can visualize time, location, and relationships 
of events, by applying data mining tools available in Solr to process real-time Twitter data 
(Tomaszewski et al. 2011; Pezanowski et al. 2018). DeepMob simulates human behavior 
and mobility during natural disasters by learning from millions of users’ GPS records with 
deep belief networks (Song et al. 2017). GeoQ is an open-source tool for assessing dam-
age by crowdsourcing geo-tagged photographs of the disaster-affected areas, developed 
in coordination with the National Geospatial-Intelligence Agency, the Presidential Inno-
vation Fellow Program, the Federal Emergency Management Agency (FEMA), and other 
analysts.

In the meantime, there are some challenging issues of using these AI-based decision 
support tools in practice. First, these tools typically require large amounts of data as input, 
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and data-related issues are a practical challenge. Input data might be available in differ-
ent types and formats for different communities, or available for some communities but 
not available for others due to various reasons, such as legal ramifications and commercial 
competitiveness. For example, big cities and urban areas usually have documented data 
detailed enough and sufficient in size to make AI predictions accurate, which may not be 
the case for small cities and rural areas. Even if all input data are available, some of it may 
be inaccurate, and there may be data ownership issues involved when using some of these 
tools. Therefore, policies and regulations need to be established for appropriate data collec-
tion, cleaning, protection, and management. Second, communities are exposed to different 
types of hazards and have different socioeconomic backgrounds. The AI-based decision 
support tools that are developed based on data from one community might not be suit-
able for another community. This naturally poses a challenge to the application generaliza-
tion of AI-based decision support tools for a diverse set of communities. Third, some tools 
may require a high level of competence in deployment, making them less user friendly for 
practitioners. Many tools require advanced software and high-performance computers to 
conduct big data analytics, which may not be available for many local governments and 
emergency agencies in economically disadvantaged regions.

5 � Discussion

As shown in Tables 1, 2, 3 and 4, all AI methods have been applied to disaster manage-
ment. However, there are many untouched application areas by some AI methods. For 
instance, very few AI methods have been used for disaster training systems (Application 
Area 7); that is probably because there is very little training data of human responses in 
disasters available to build appropriate AI models for such purposes. Deep neural networks 
(method R) and recursive neural networks (method T) are rarely applied for disaster pre-
paredness and disaster recovery (Application Areas 5–8 and 14–17). Policy gradient-based 
algorithms have not been applied in disaster mitigation and disaster recovery (Applica-
tion Areas 1–4 and 14–17). The absence of AI applications to untouched areas may attract 
future research attention for exploration.

Many challenges of practical AI applications to disaster management are due to data-
related issues, such accessibility, completeness, security, privacy, and ethical issues (Boyd 
and Crawford 2012; Crawford and Finn 2015). Making accurate predictions with AI tech-
niques typically requires a large amount of good data for building the model. Such data 
are not always available. For example, some infrastructure data cannot be easily accessible 
due to reasons of national security and commercial competitiveness. Data trustworthiness 
is another issue. For instance, raw data from social networks often contain various inac-
curacies and biases, requiring advanced information filtering and verification. One step 
further, collecting and analyzing personal data poses significant issues related to fairness, 
responsibility, and human rights. Even if the required data are available, data incomplete-
ness is a common problem in disaster-related data analyses due to the dynamically chang-
ing environment of a disaster. To deal with the aforementioned issues, there have been vari-
ous platforms and databases built to collect and share disaster-related data in a relatively 
standardized form. Some examples include ShakeMap and ShakeCast (USGS 2016b, a), 
GeoPlatform (GeoPlatform 2016), I-WASTE (EPA 2016), Lantern Live (DOE 2014), and 
Disaster Response Program (ESRI 2016), DesignSafe (NHERI 2019), xBD (Gupta et al. 
2019), etc.



www.manaraa.com

2661Natural Hazards (2020) 103:2631–2689	

1 3

There are three computation-related challenging issues. First, there may not be enough 
human labeled training data in time considering the increasing amount of data and the lim-
ited amount of manpower in the wake of a disaster (Pouyanfar et al. 2018). In this regard, 
applying and improving unsupervised learning approaches may be the way out for handling 
real-world data without manual human labels (Ranzato et al. 2013). Second, the computa-
tional complexity sharply increases with the size, variety, and update rate of data, which 
challenges the capacity of processing, managing, and learning data within a reasonable 
response time in the disaster scenario. Efficiently managing, storing, and processing big 
data is essential for disaster management, particularly disaster response. Using cloud plat-
forms to efficiently query and store big data is helpful to address this challenge. Develop-
ing more efficient AI methods would naturally be helpful. There have been efforts made 
to address this challenge, including reservoir computing (Tanaka et  al. 2019) and using 
GPUs and AI accelerators (Wang et  al. 2019f). Using crowdsourcing with real-time AI 
analyses can help to complete the necessary computation within the time limit and elimi-
nate the amount of necessary but tedious work that traditionally needs effort on-site (Bev-
ington et al. 2015). Third, building user-friendly tools for disaster management is essential 
for practitioners. This means building AI-based tools with interfaces that require minimal 
technical expertise for practical use.

Analysis results from AI models should be explainable and repeatable for supporting 
practical disaster management. To address this issue, there have been research efforts made 
to improve the interpretability and explainability of AI models, such as explainable artifi-
cial intelligence (Arrieta et al. 2020; Gunning et al. 2019). On the other hand, as AI solu-
tions are developed for disaster management, we recognize that there are often challenges 
in reproducibility of new results. For disaster related data, the non-reproducibility issue is a 
particular challenge, because disasters happen irregularly with various impacts in different 
regions (Wang et al. 2016). Replication of experimental results is essential for trustworthy 
advancement in science generally and for AI models specifically. To address this issue, 
there have been research efforts such as IBM’s AI OpenScale and OpenML (Vanschoren 
et al. 2014; Rossi 2019; Yang et al. 2019a). These efforts work toward making AI transpar-
ent and trustworthy by capturing the processes, data, and parameters for experiments to 
become repeatable.

6 � Concluding remarks

This study focuses on AI applications in assisting in efficient disaster management during 
four disaster management phases: mitigation, preparedness, response, and recovery. In par-
ticular, this study reviews applications of a total of 26 AI methods in 17 Application Areas 
in disaster management in all four phases. Both research and practice show that analysis 
results from AI models are very useful for supporting disaster management. In the current 
stage, the general trend is that most applications focus on disaster response, followed by 
disaster mitigation.

AI is better than humans in terms of data analysis speed and thus the volume of analyz-
able data. It can make acceptable forecasts when the scope is within the range of the train-
ing data, but predictions when the scope is beyond the range may be unacceptable. This 
is especially true as both the hazard and the society are constantly evolving, which might 
fundamentally change the utility of attributes used to train the original model. Even if AI 
algorithms can make reasonably good predictions with the available data, a further concern 
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is whether we should completely rely on the predictions and suggestions from AI algo-
rithms to deploy resources and develop disaster plans. This question has no simple answer.

For practical AI applications in disaster management, there are a number of challeng-
ing issues related to data and computation, as well as inseparability and replicability of 
analysis results. This study also identifies many untouched application areas of different 
AI methods. How to develop more powerful and cost-effective AI-based tools to sup-
port decision-making in practical disaster management with improved analysis accuracy 
and speed is an urgent problem for the research community. Despite these challenges and 
untouched areas, AI methods provide numerous opportunities and easy solutions for vari-
ous successful applications in disaster management. By discussing the application status 
of AI methods in disaster management, this study aims to inspire future research to tackle 
the identified challenging issues and advance disaster management with AI for improving 
community disaster resilience.
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